Parameter Interval Estimation of Semiparametric Spline Truncated Regression Model for Longitudinal Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

An Adaptive Spline-Based Sieve Semiparametric Maximum Likelihood Estimation for the Cox Model with Interval-Censored Data

We propose to analyze interval-censored data with Cox model using a spline-based sieve semi-parametric maximum likelihood approach in which the baseline cumulative hazard function is approximated by a monotone B-splines function. We apply the generalized Rosen algorithm , used in Zhang & Jamshidian (2004), for computing the maximum likelihood estimate. We show that the the estimator of regressi...

متن کامل

Semiparametric Poisson Regression Model for Clustered Data

A semiparametric Poisson regression is proposed in modeling spatially clustered count data. The heterogeneous covariate effect across the clusters is formulated in the context of nonparametric regression while the random clustering effect is based on a parametric specification. We propose two estimation procedures: (1) the parametric and nonparametric parts are estimated simultaneously via pena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2019

ISSN: 1757-899X

DOI: 10.1088/1757-899x/546/5/052053